REPRODUCING KERNEL STRUCTURE AND SAMPLING ON
TIME-WARPED KRAMER SPACES

Shahrnaz Azizi and Douglas Cochran

Department of Electrical Engineering
Arizona State University
Tempe, AZ 85287-7206, U.S.A.

ABSTRACT
Given a signal space of functions on the real line, a
time-warped signal space consists of all signals that
can be formed by composition of signals in the original
space with an invertible real-valued function. Clark’s
theorem shows that signals formed by warping band-
limited signals admit formulae for reconstruction from
samples. This paper considers time warping of more
general signal spaces in which Kramer’s generalized
sampling theorem applies and observes that such spaces
admit sampling and reconstruction formulae. This ob-
ervation motivates the question of whether Kramer’s
theorem applies directly to the warped space, which is
answered affirmatively by introduction of a suitable re-
producing kernel Hilbert space structure. This result
generalizes one of Zeevi, who pointed out that Clark’s
theorem is a consequence of Kramer’s.

1. INTRODUCTION
Given a space $S$ of signals $f : \mathbb{R} \rightarrow \mathbb{C}$ and an invertible
function $\gamma : \mathbb{R} \rightarrow \mathbb{R}$, the time-warped signal space $S_\gamma$
consists of all functions of the form $h = f \circ \gamma$. In the
case that $S$ is the space of $B$ of $\Omega$-bandlimited signals
(i.e., functions of the form

$$f(t) = \frac{1}{2\pi} \int_{-\Omega}^{\Omega} \hat{f}(\omega) e^{i\omega t} \, d\omega$$

with $0 < \Omega < \infty$ and $f \in L^2(\mathbb{R})$, a result of J.J. Clark
et al. [3] shows that the space $B_\gamma$ of time-warped band-
limited signals admits the formula

$$h(t) = \sum_n h(\tau_n) \text{sinc} \left[ \frac{\Omega(\gamma(t) - nT)}{\pi} \right]$$

for reconstruction of $h$ from samples $h(\tau_n) = h(\gamma^{-1}(nT))$.

In this expression, $T = \pi/\Omega$ is the so-called Nyquist
interval for $B$ and $\text{sinc}(t) = \sin(\pi t)/\pi t$. The sampling
times $\{\tau_n\}$ are generally nonuniformly spaced and
$B_\gamma$ contains signals that are not bandlimited [5], so
Clark’s result provides a means for reconstructing cer-
tain spaces of non-bandlimited signals from nonuni-
formly spaced samples.

In [11], Y.Y. Zeevi and E. Shalomot noted that Clark’s
theorem for time-warped bandlimited functions may be
seen as a special case of Kramer’s well known general-
ized sampling theorem [8]. On the other hand, it has
been observed [4] that for any signal space $S$ that
admits a reconstruction formula of the form

$$f(t) = \sum_n f(t_n) \phi_n(t)$$

there is a sampling theorem with reconstruction for-
mula

$$h(t) = \sum_n h(\gamma^{-1}(t_n)) \phi_n(\gamma(t))$$

for time-warped signals in $S_\gamma$. Thus Clark’s basic idea
applies to time-warped signal spaces in addition to $B_\gamma$.

This paper considers time-warped signal spaces of the form $K_\gamma$ where $K$ is a “Kramer” space of sig-
nals for which Kramer’s theorem yields a reconstruction
formula of the form (2). When endowed with
the appropriate inner product, $K_\gamma$ is shown to admit
a reproducing kernel and thus become a reproducing
kernel Hilbert space (RKHS). The corresponding sam-
pling theorem is, however, identical to the one obtained
by applying Clark’s method. Moreover, time-warped
Kramer spaces with the RKHS inner product are seen
to themselves be Kramer spaces and thus Clark’s sam-
pling theorem in these spaces is subsumed by Kramer’s
theorem, as in the case of time-warped bandlimited sig-
als.

Unitary time warping of finite-energy ($L^2$) signals
has received recent attention in connection with sev-
eral signal processing applications [1, 2, 6]. This paper
explores extensions of the results developed to unit-
arily time-warped signal spaces.
2. CLASSICAL SAMPLING THEOREMS

The well known sampling theorem of Whittaker, Kotelnikov, and Shannon (WKS) establishes that a bandlimited signal $f$ of the form (1) can be reconstructed from uniformly spaced samples by the WKS formula

$$f(t) = \sum_{n \in \mathbb{Z}} f(n) \text{sinc}\left[\frac{\Omega(t - nT)}{\pi}\right]$$  (4)

where $T = \pi/\Omega$ (as above) and the convergence is absolute [7]. To set the stage for the results in the following sections of this paper, this section summarizes Clark’s and Kramer’s extensions of this theorem. Since no generality is sacrificed, the remainder of the paper will assume $\Omega = \pi$ to make $T = 1$ and simplify the formulas presented.

2.1. Clark’s theorem

If $h = f \circ \gamma$ (i.e., $f(t) = f(\gamma(t))$ for all $t \in \mathbb{R}$) with $f \in B$ and $\gamma$ a warping function as described above, then defining $\tau_n = \gamma^{-1}(n)$ yields $h(\tau_n) = f(\gamma(\gamma^{-1}(n))) = f(n)$ so that the WKS formula (4) gives

$$f(t) = \sum_n h(\tau_n) \text{sinc}[t - n]$$

and hence

$$h(t) = f(\gamma(t)) = \sum_n h(\tau_n) \text{sinc}[\gamma(t) - n]$$  (5)

With $\gamma(t) = t$, Clark’s formula (5) reduces to (4) with $T = 1$. Moreover, for $\gamma$ a non-affine function (i.e., $\gamma(t)$ is not of the form $at + b$ with $a$ and $b$ real numbers), the sampling times $\{\tau_n\}$ will generally be non-uniformly spaced and the space $B_\gamma$ will contain non-bandlimited signals. Thus Clark’s theorem generalizes the WKS theorem. Further analysis of the space $B_\gamma$ is undertaken in [4] and [5].

2.2. Kramer’s theorem

Kramer’s generalized sampling theorem [8] considers signals supported in a bounded interval $I$ and supposes the existence of a transform kernel $\psi : \mathbb{R} \times I \rightarrow \mathbb{C}$ such that $\psi(t, \cdot) \in L^2(I)$ for each real $t$. The Kramer space $K$ associated with $I$ and $\psi$ consists of all signals of the form

$$f(t) = \int_I \psi(t, \omega) \bar{f}(\omega) d\omega,$$  (6)

with $\bar{f} \in L^2(I)$. If there exists a countable set $\{\tau_n\} \subset \mathbb{R}$ such that $\{\psi(t_n, \cdot)\}$ is a complete orthogonal set on $L^2(I)$, then $K$ admits the reconstruction formula

$$f(t) = \lim_{N \to \infty} \sum_{|n| \leq N} f(t_n) s_n(t)$$

where

$$s_n(t) = \int_I \frac{\psi(t, \omega) \bar{\psi}(t_n, \omega)}{|\psi(t_n, \omega)|^2} d\omega$$  (7)

With $I = [-\Omega, \Omega]$, $\psi(t, \omega) = e^{i\omega t}/2\pi$, and $t_n = n\pi/\Omega$, Kramer’s theorem reduces to the WKS theorem. Hence this result, like Clark’s, generalizes the WKS result.

3. RKHS STRUCTURE ON WARPED KRAMER SPACES

Recall that a reproducing kernel (RK) on a Hilbert space $H$ of complex-valued functions on $\mathbb{R}$ is a function $k : \mathbb{R}^2 \rightarrow \mathbb{C}$ such that $k(\cdot, x) \in H$ for each real $x$ and $f(x) = \langle f, k(\cdot, x) \rangle$ for every $x \in \mathbb{R}$ and $f \in H$.

Let $K$ be a Kramer space and let $\gamma$ be a warping function. To show that $K_\gamma$ admits a RKHS structure, note that (6) implies each $f_\gamma = f \circ \gamma \in K_\gamma$ has a representation

$$f_\gamma(t) = \int_I \bar{f}(\omega) \psi(\gamma(t), \omega) d\omega$$  (8)

Define an inner product $\langle \cdot, \cdot \rangle$ in $K_\gamma$ by

$$\langle f_\gamma, g_\gamma \rangle = \int_I \bar{f}(\omega) \bar{g}(\omega) d\omega$$  (9)

and $k_\gamma(t, x)$ by

$$k_\gamma(t, x) = \int_I \psi(\gamma(t), \omega) \psi(\gamma(x), \omega) d\omega$$  (10)

Comparing (10) with (8) shows that $k_\gamma(\cdot, x)$ is the integral transform of $\psi(\gamma(x), \cdot)$ and hence

$$\langle f_\gamma, k_\gamma(\cdot, x) \rangle = \int_I \bar{f}(\omega) \psi(\gamma(x), \omega) d\omega = f_\gamma(x)$$  (11)

Thus $k_\gamma$ is a RK for $K_\gamma$.

3.1. RKHS structure and sampling

Clark’s observation shows that the warped Kramer space $K_\gamma$ admits a reconstruction formula with sampling times $\tau_n = \gamma^{-1}(t_n)$ and interpolation functions $s_n(\gamma(t))$ obtained from the $s_n$ defined in (7). Using the RKHS structure on $K_\gamma$ defined above allows this to be deduced both as a direct consequence of Kramer’s theorem (i.e., without reference to Clark’s approach) and as a corollary to a standard result about sampling formulae in RKHS. With $K = B$, the first of these results reduces to confirm Zeevi and Shlomot’s remark about Clark’s theorem following from Kramer’s.
Let \( \{ t_n \} \) be a sampling set for \( K \) and define \( \phi(t, \omega) = \psi(\gamma(t), \omega) \). With \( \{ t_n \} \) as defined above, the facts that \( \{ \psi(t_n, \cdot) \} \) is a complete orthogonal set in \( L^2(\Omega) \) and
\[
\{ \phi(t_n, \omega) \} = \{ \psi(t_n, \omega) \}
\]
imply that \( \{ \phi(t_n, \cdot) \} \) is a complete orthogonal set in \( L^2(\Omega) \). Moreover, with this notation equation (8) shows that
\[
f_\gamma(t) = \int_1 \phi(t, \omega) f_\gamma(\omega) \, d\omega
\]
for each \( f_\gamma \in K_\gamma \). Hence Kramer’s theorem allows reconstruction of \( f_\gamma \) from samples at \( \{ f_\gamma(t_n) \} \) by
\[
f_\gamma(t) = \sum_n f_\gamma(t_n) s^*_n(t)
\]
with
\[
s^*_n(t) = \frac{\int_1 \phi(\gamma(t), \omega) \psi(\gamma(t_n), \omega) \, d\omega}{\int_1 |\phi(\gamma(t_n), \omega)|^2 \, d\omega}
\]
\[= \frac{\int_1 \psi(\gamma(t), \omega) \psi(\gamma(t_n), \omega) \, d\omega}{\int_1 |\psi(\gamma(t), \omega)|^2 \, d\omega} \]
\[= s_n(\gamma(t))
\]
(12)

exactly as defined by Clark’s observation.

The relationship between sampling and reproducing kernels is well established [9, 10]. In particular, a sampling basis \( \{ v_n \} \) of a RKHS yields a reconstruction formula
\[
f(t) = \sum_n f(t_n) v_n(t)
\]
for a sampling set \( \{ t_n \} \) if and only if its biorthogonal basis \( \{ V_n \} \) is given by
\[
V_n(x) = \langle V_n, v_n \rangle k(t_n, x)
\]
(13)

Recall that two sets \( \{ v_n \} \) and \( \{ V_n \} \) are biorthogonal if \( \langle v_n, V_m \rangle = \delta_{nm} \langle v_n, v_n \rangle \). Comparing (12) with (8) shows that \( s^*_n(t) \) is the integral transform of
\[
\frac{\psi(\gamma(t_n), \omega)}{\int_1 |\psi(\gamma(t_n), \omega)|^2 \, d\omega}
\]
and hence
\[
\langle s^*_n, k_\gamma(t_n, \cdot) \rangle = \delta_{nm}
\]
when the inner product is as defined in (9). Therefore the biorthogonal basis of the sampling set \( \{ s^*_n \} \) arises from the RK, (13) is satisfied, and the sampling basis \( \{ v_n \} \) is identical to \( \{ s^*_n \} \).

4. SAMPLING IN UNITARILY WARPED SPACES

As mentioned earlier, the role of unitary operators in signal processing has received considerable attention in recent years in connection with several applications. If \( \gamma \) is a differentiable warping function, the mapping taking \( f \in L^2(\Omega) \) to the signal \( h \) with values \( h(t) = \sqrt{\gamma'(t)} f(\gamma(t)) \) is easily verified to be a unitary operator on \( L^2(\Omega) \).

The machinery and results developed in the previous section of this paper extend readily to unitarily warped Kramer spaces. In particular, the reproducing kernel becomes
\[
k_\gamma(t, x) = \sqrt{\gamma'(x) \gamma'(t)} \int_1 \psi(\gamma(t), \omega) \psi(\gamma(x), \omega) \, d\omega
\]
and, assuming no \( \gamma'(t_n) = 0 \), the sampling basis
\[
v_n(t) = \sqrt{\frac{\gamma'(t)}{\gamma'(t_n)}} s_n(\gamma(t))
\]
and Parseval-like relationship
\[
\sum_n \frac{|h(t_n)|^2}{\sqrt{\gamma'(t_n)}} = \int |h(t)|^2 \, dt
\]
are obtained.

5. CONCLUSION

This paper has shown that warped and unitarily warped Kramer spaces admit RKHS structures, in view of which three perspectives apply to yield sampling theorems for such spaces. Clark’s perspective was seen to be subsumed by Kramer’s theorem in this setting, as has been pointed out by other authors in the special case of time-warped bandlimited signals. Furthermore, the introduction of a RKHS structure allows the use of standard results on sampling in RKHS to obtain the sampling theorems generated by Clark’s and Kramer’s machinery in these time-warped spaces.

6. REFERENCES


