Fast Stitching Algorithm for Moving Object Detection and Mosaic Construction
Jun-Wei Hsieh
Department of Electrical Engineering
YuanZe University, Taoyuan, Taiwan, R.O.C.
Tel:886-3-463-8800 Ext. 430 Fax:886-3-463-9355 shieh@saturn.yzu.edu.tw

Abstract
This paper proposes a novel edge-based stitching method to detect moving objects and construct mosaics from images. The method is a coarse-to-fine scheme which first estimates a good initialization of camera parameters with two complementary methods and then refines the solution through an optimization process. The two complementary methods are the edge alignment and correspondence-based approaches, respectively. Since these two methods are complementary to each other, the desired initial estimate can be obtained more robustly. After that, a Monte-Carlo style method is then proposed for integrating these two methods together. Then, an optimization process is applied to refine the above initial parameters. Since the found initialization is very close to the exact solution and only errors on feature positions are considered for minimization, the optimization process can be very quickly achieved. Experimental results are provided to verify the superiority of the proposed method.

1. Introduction
Image stitching is the process of recovering the existing camera motion parameters between images and then compositing them together. This technique has been successfully applied to many different applications like video compression [1], video indexing [2], or creation of virtual environments [3]. For example, Shum and Szeliski [3] proposed a method to stitch a set of images together for constructing a panorama. In addition, Irani and Anandan [2] used this technique to represent and index different video contents. For most methods in this field, an affine camera model is commonly used to approximate possible motions between two consecutive frames. Then, this model can be recovered by two common methods, i.e., the correlation-based approach and the optimization-based one. For example, Kuglin and Hines [4] presented a phase-correlation method to estimate the displacement between two adjacent images in frequency domain. In addition, Zoghlami et al. [5] proposed a corner-based approach to build a set of correspondences for computing possible transformation parameters from pair of images. However, the establishment of good correspondences is a challenging work when images have nonlinear intensity changes [3]. In order to avoid this problem, Szeliski [3] proposed a nonlinear minimization algorithm for automatically registering images by minimizing the discrepancy in intensities between images. In comparison with the correlation-based method, the global optimization approach performs more robustly but will be trapped on a local minimum if the starting point is not properly initialized.

In this paper, we present an edge-based stitching technique to detect moving objects and construct mosaics from consecutive images. In general, the motion model between consecutive images is non-linear. This paper uses a coarse-to-fine approach to robustly and accurately recover this nonlinear model. In the coarse stage, two complementary methods, i.e., the edge alignment and the correspondence-based approaches, are first proposed to get respective initial estimates from images. Then, in the refined stage, the found initial estimates are further refined through an optimization process. The edge alignment method finds possible image translations by checking the consistencies of edge positions between different images. It is simple, efficient, and has good capabilities in overcoming large displacements and light variations between images. On the other hand, the correspondence-based method obtains desired model parameters from a set of correspondences by using a new feature extraction and a new correspondence building method. Due to the complementary property of the two methods, we can obtain the desired initial estimates more robustly. After that, a Monte-Carlo style method with grid partition is then proposed to integrate these methods together. The grid partition scheme can much enhance the accuracy of each try for deriving the correct parameters. Then, the found parameters are further refined through an optimization process. Since the minimization is only applied to the positions of matching pairs, the optimization process is performed very efficiently. From experimental results, the proposed method indeed achieves great improvements in terms of stitching accuracy, robustness, and stability.

2. Camera Motion Model
Assume that input images are captured by a video camera. Then, the relationship between two adjacent images can be described by an affine camera model:

\[x' = \frac{m_x x + m_y y + m_z}{m_a x + m_b y + m_c} \quad \text{and} \quad y' = \frac{m_x x + m_y y + m_z}{m_a x + m_b y + m_c}, \]

where \((x, y)\) and \((x', y')\) are a pair of pixels in the two adjacent images \(I_0\) and \(I_1\), and \(M = (m_a, m_b, \ldots, m_c)\) the motion parameters. The \(M\) can be obtained by minimizing the error function \(E(M)\) as follows:
is a standard deviation. Then, Szeliski[3] gave the solution \(M \) with the iterative form:

\[
M^T \leftarrow M^T + \Delta M^T,
\]

where \(\Delta M^T = (A + \lambda I)^{-1} B \), \(A = [a_{ik}] \), \(B = [b_i] \), \(a_{ik} = \sum e_i \frac{\partial I_{xy}}{\partial p_k} \), \(b_i = \sum e_i \frac{\partial I_{xy}}{\partial v_k} \), and \(\lambda \) is a coefficient.

The method works well only if the initial value is very close to the correct \(M \). If two images have large displacements and lighting changes, it will suffer from low convergence and get trapped in local minimum.

3. Fast Algorithm for Camera Compensation and Mosaic Construction

In this paper, a coarse-to-fine approach is proposed for solving Eq.(1). In this approach, a good initial estimate is first found with edges and then refined through an optimization process. The initial estimate is got from two complementary methods, i.e., the edge alignment and the correspondence-based approaches. Since the two methods are complementary to each other, the robustness of parameter estimation can be much enhanced. The former has better capabilities to overcome large displacements and light variations between images. The latter can solve more general camera motion model but fails to work when images have large lighting changes. After that, a Monte Carlo style method is then applied to integrate the above solutions together. After integration, the found parameters are further refined with an optimization process, which minimizes errors only on the coordinates of feature points. Since only feature points are involved, the optimization process can be performed extremely efficiently. The overall flowchart is described in Fig. 1.

3.1 Translation Estimation Using Edge Alignment

In this section, the edge alignment method is first proposed to estimate desired translations from pair of images. Assume \(I_a \) and \(I_b \) are two images prepared to be stitched (see Fig. 2). Through a vertical edge detector (very simple), the positions of vertical edges in \(I_a \) and \(I_b \) can be obtained as \(p_a \) and \(p_b \), respectively. If \(I_a \) and \(I_b \) come from the same scene, there should exist an offset \(d \), such that \(P_a(i) = P_b(j) + d \), and the corresponding relation between \(i \) and \(j \) is one-to-one. Then, the offset \(d \) is the desired translation solution between \(I_a \) and \(I_b \) in the \(x \) direction, i.e., \(d = 80 \). However, in practice, due to noise, some edges will be lost and lead to that the relations between \(P_a \) and \(P_b \) are no longer one-to-one. For this problem, we defines a distance function \(d(i,k) \) to measure the distance of a position \(P_a(i) \) to the translation solution \(k \) as

\[
d(i,k) = \min_{i,j \in N_y} \| P_a(i) - k - P_b(j) \|,
\]

where \(N_y \) is the number of elements in \(P_b \). Let \(T_d \) be a threshold, i.e., 4. Given a number \(k \), we can determine the number \(N_p \) of elements in \(P_p \) whose \(d(i,k) \) is less than \(T_d \). With these \(N_p \) elements, the average value \(E_v \) of \(d(i,k) \) can also be calculated. \(E_v \) is a good index to measure the goodness of \(k \) whether it is a suitable translation solution. That is, if \(E_v \leq T_e \) and \(N_p \geq T_p \), the \(k \) is collected as an element of the set \(S \) of possible horizontal translations, where \(T_p \) and \(T_e \) are 5 and 2, respectively. Let \(W \) denote the width of \(I_b \). Through examining different \(k \) for all \(|k| < W \), the set \(S \) can be obtained. Similarly, the set \(S \) of possible vertical translations can be determined by taking advantages of horizontal edges. With \(S \), the set \(S \) of possible translations can be obtained as: \(\{ (x,y) \mid x \in S, y \in S \} \). The best translation can be then determined from \(S \) through a correlation technique.

3.2 Parameter Estimation by Feature Matching

In what follows, details of the correspondence-based approach are described.

3.2.1 Feature Extraction

In this section, we will use several edge operators to extract a set of useful feature points. First of all, let the gradients of an image \(I(x,y) \) at scale \(\sigma \) in the \(x \) and \(y \) directions be then as \(I_\sigma(x,y) = I * G_\sigma(x,y) \) and \(I_\sigma^2(x,y) = I * G_\sigma^2(x,y) \), where \(G_\sigma \) and \(G_\sigma^2 \) denote the first partial derivatives of a 2D Gaussian smoothing function \(G_\sigma(x,y) \) in the \(x \) and \(y \) directions, respectively, where \(\sigma \) is a standard deviation. Then, the modulus of \(I_\sigma \) and \(I_\sigma^2 \) is defined as:

\[
| \nabla I_\sigma(x,y) | = \sqrt{ I_\sigma^2(x,y) + I_\sigma^2(x,y) }^2.
\]

Since we are interested in some specific feature points for image stitching, additional constraints have to be introduced. In what follows, two conditions adopted here for judging whether a point \(P(x,y) \) is a feature point or not are summarized as follows:

C1: \(P(x,y) \) is a local maxima of \(| \nabla I_\sigma(x,y) |_{x,y} \);
C2: \(| \nabla I_\sigma(x,y) |_{x,y} = \max_{(x,y) \in N_y} \{ | \nabla I_\sigma(x,y) |_{x,y} \} \),

where \(N_y \) is the neighborhood of \(P(x,y) \).

3.2.2 Correspondence Establishment

Let \(FP_{1a} = \{ p_i \}_{i=1}^{N_a} \) and \(FP_{1b} = \{ q_i \}_{i=1}^{N_b} \) be two
sets of feature points obtained from adjacent images I_a and I_b, respectively. For each point p_i in FP_a, find the maximum peak of the similarity measure as its best matching point q_j in another image I_b. In other words, a pair $\{p_i \leftrightarrow q_j\}$ is qualified as a matching pair if $C(p_i, q_j) = \max_{q \in FP_b} C(p_i, q)$ and $C(p_i, q_j) \geq T_c$, where $T_c = 0.75$ and $C(p,q)$ is a cross correlation measure. Then, a set of matching pairs can be extracted. However, the set of matching pairs can be further refined if relative geometries of feature points are considered. In what follows, we will define a matching goodness measure and a relation constraint to refine the matching results.

Let $MP_{i \leftrightarrow j} = \{p_i \leftrightarrow q_j\}_{i,j=1,2,..}$ be the set of matching pairs, where p_i and q_j are points in I_a and I_b, respectively. Let $Ne_{i_j}(p_i)$ and $Ne_{i_j}(q_j)$ denote the neighbors of p_i and q_j within a disc of radius R, respectively. Assume that $NP_{i \leftrightarrow j} = \{n^i_j \leftrightarrow n^j_i\}_{i,j=1,2,..}$ is the set of matching pairs, where $n^i_j \in Ne_{i_j}(p_i)$ and $n^j_i \in Ne_{i_j}(q_j)$. The proposed method works based on the concept that if $\{p_i \leftrightarrow q_j\}$ and $\{p_j \leftrightarrow q_i\}$ are two good matches, the relation between p_i and p_j should be similar to the one between q_j and q_i. Then, we can measure the goodness of a matching pair $\{p_i \leftrightarrow q_j\}$ according to how many matches $\{n^i_j \leftrightarrow n^j_i\}$ in $NP_{i \leftrightarrow j}$ whose distance $d(p_i, n^i_j)$ is similar to the distance $d(q_j, n^j_i)$, where $d(u,u')$ is the Euclidean distance between u and u'. Then, the measure of goodness of $\{p_i \leftrightarrow q_j\}$ can be defined as:

$$G_{i,j}(i) = \sum_{n^i_j \in Ne_{i_j}(p_i)} \frac{r(i,k)}{1 + D(i,k)},$$

where $D(i,k) = d(p_i, n^i_j) + d(q_j, n^j_i)/2\times r(i,k) = e^{-\mu(i,k)/T_e}$, with a threshold T_e, and $\mu(i,k) = d(p_i, n^i_j) - d(q_j, n^j_i)$.

Let G be the average value of all $G_{i,j}(i)$. If $G_{i,j}(i) < 0.75G$, the pair $\{p_i \leftrightarrow q_j\}$ is eliminated.

3.3 Estimation Using Monte Carlo Method

In this section, a Monte-Carlo-style method is proposed for integrating two above methods together for further optimization process. The spirit of the Monte Carlo method is to use many tries to find wanted correct solutions. If we define a try as a random selection of four matching pairs, each try will generate a solution by solving Eq.(1). Then, it can be expected that a correct solution M will be obtained after hundreds or thousands of tries. Assume all the correct and false matching pairs distribute very randomly. We segment input images into several grids. The strategy to choose each try is: randomly select four different grids first and then get one matching pair from each grid. With this method, the probability to select four correct matching pairs will much enhance for getting correct solutions (due to the limited paper space, the proof is ignored).

Assume $M' = (m_{i_1}, m_{i_2}, \ldots, m_{i_r})$ is the solution got from the ith try. To determine which try is the best, we define the consistent error of a matching pair $\{p \leftrightarrow q\}$ to M' as follows:

$$e(p,q,M') = \sqrt{(q^2 - m_i^1)^2 + (q_j^2 - m_i^2)^2}. \quad (5)$$

For each matching pair $\{p_i \leftrightarrow q_j\}$ in $MP_{i \leftrightarrow j}$, if $e(p_i, q_j, M') < T_e$, the pair $\{p_i \leftrightarrow q_j\}$ is said to be consistent to M'. Then, a counter $c(M')$ can be used to record how many matching pairs in $MP_{i \leftrightarrow j}$ which are consistent to M'. The best solution \tilde{M} is then obtained according to the following equation:

$$\tilde{M} = \text{argmax}_{M'} c(M'), \quad (6)$$

where M^0 is got from the edge alignment approach.

3.4 Parameter Refinement through Optimization

With the Monte Carlo method, the best estimate \tilde{M} can be found from $MP_{i \leftrightarrow j}$. However, \tilde{M} can be further refined if additional optimization process is applied. Let $MP_{\tilde{M}}$ be denoted as a new set of matching pairs:

$$MP_{\tilde{M}} = \{p_k \leftrightarrow q_k, k = 1, \ldots, N_{\tilde{M}}\}, \quad \text{where} \quad p_k \in FP_{i_k}, \quad q_k \in FP_{j_k}, \quad \text{and} \quad e(p_k, q_k, \tilde{M}) < T_e. \quad (7)$$

With $MP_{\tilde{M}}$, we can define an error function as:

$$\Phi(\tilde{M}) = \sum_{k=1}^{N_{\tilde{M}}} e(p_k, q_k, \tilde{M}). \quad (7)$$

where $\{p_k \leftrightarrow q_k\}$ is an element in $MP_{\tilde{M}}$. By calculating the gradient and Hessian matrix of Φ, \tilde{M} can be updated with the iterative form:

$$\tilde{M}^{T+1} = \tilde{M}^T + (A + \lambda I)^{-1}B, \quad (8)$$

where $[A]_{ij} = \sum_{k=1}^{N_{\tilde{M}}} \frac{\partial^2 e(p_k, q_k, \tilde{M})}{\partial p_i \partial p_j}$, $[B]_{ij} = \sum_{k=1}^{N_{\tilde{M}}} \frac{\partial^2 e(p_k, q_k, \tilde{M})}{\partial p_i \partial q_j}$, and λ is a coefficient obtained by the Levenber-Marquardt method [6]. The above minimization process converges very quickly since only few feature positions are involved into minimization and the initial value is close to correct one.

4. Experimental Results

Fig. 3 shows the result for mosaic construction when a series of panoramic images are used. Fig. 4 shows the case when images have larger intensity differences.
The large lighting changes will lead to the instability of feature matching for most traditional correlation techniques. However, the proposed edge alignment algorithm still works well to find desired parameters. Fig. 5 shows the case when images have moving objects. The moving object will disturb the work of image stitching and analysis. Fig. 6 shows the result when images have some rotation and skewing effects. In addition to mosaic constructions, the proposed method also can be used to extract moving objects from video sequence. Fig. 7 shows two frames got from a movie. (c) is the mosaic of (a) and (b). (d) is the detected moving object. From all experimental results, it has been proved that the proposed method is indeed an efficient, robust, and accurate method for image stitching.

References