ABSTRACT

In this paper, we propose new gradient-based methods for image reconstruction from partial Fourier measurements, which are commonly used in magnetic resonance imaging (MRI) or synthetic aperture radar. Compared to classical gradient recovery methods, a key improvement is obtained by formulating the gradient recovery problem as a compressed sensing problem with the additional constraint that the curl of the gradient field must be zero. Moreover, we formulate the image recovery problem as an inverse problem on graphs. Iteratively reweighted $\ell_1$ recovery methods are proposed to recover these relative differences and the structure of the similarity graph. Finally, the image is recovered from the compressed Fourier measurements using least squares estimation. Numerical experiments demonstrate that the proposed approach outperforms the state-of-the-art image recovery methods.

Index Terms— Compressed sensing, Fourier transform, Sparse recovery, Spectral graph theory, Total variation.

1. INTRODUCTION

The recovery of an image from Fourier measurements plays a very important role in several scanning technologies, such as magnetic resonance imaging (MRI) [11] and synthetic aperture radar [2]. In this context, one would like to reduce the scan time and acquire the smallest number of measurements allowing recovery with the highest quality.

Compressed sensing [3] has emerged in the last few years as a valuable approach to reduce the amount of spectral data needed for reconstruction. Indeed, CS has been shown to effectively recover images from a limited number of samples by taking advantage of the sparse nature of the gradient minimizing total variation (TV, [4]). Among the solvers for TV minimization, RecPF [5] achieves the best CS recovery results. Although TV minimization allows a significant reduction in the number of measurements to be acquired, reconstructed images often suffer from undesirable artifacts and image details tend to be over-smoothed [6].

In [6] a new algorithm for image reconstruction, labelled as GradientRec–Diff, has been proposed. In a nutshell, given the set of spectral data, the horizontal and vertical differences are estimated from compressed measurements; the image is then recovered using an integration method. When the number of measurements is very small, RecPF achieves better reconstruction error. However, GradientRec–Diff shows better performance than RecPF, at the price of higher complexity, for low undersampling regimes.

To overcome these drawbacks, in this paper we propose new gradient based methods for image recovery. Inspired by the emerging field of signal processing on graphs, the image recovery problem is formulated as an inverse problem on graphs. More precisely, a graph is defined on the data units of the image: each unit is associated to a graph node and an edge is drawn with a weight depending on the similarity between the image values. We cast the gradient recovery problem as a compressed sensing problem enforcing both the sparsity and the directional continuity in the image gradient domain. Indeed, given incomplete information or presence of noise, the reconstructed gradient field by GradientRec–Diff might be not conservative and, consequently, non-integrable. In the proposed method we enforce that the integral along any closed curve should be equal to zero, as this allows to obtain a more accurate estimation of the image gradient and, consequently, a better image reconstruction quality. Moreover, iteratively reweighted $\ell_1$ recovery methods are proposed to recover the relative differences and to infer the structure of the similarity graph. Once the gradient field is estimated, the image is recovered using least squares estimation.

Numerical experiments show that the proposed approach outperforms the state-of-the-art image recovery methods in terms of relative error for several sampling patterns. More precisely, the proposed CCGE algorithms achieve perfect reconstruction with the lowest number of measurements.

2. IMAGE RECOVERY FROM SPECTRAL DATA

2.1. Problem formulation

Let $F \in \mathbb{R}^{m \times n}$ be an image and denote $N = mn$ and $[n] = \{1, \ldots, n\}$. Each pixel of the image can be identified by a pair of indexes $(u_x, u_y) \in [m] \times [n]$ corresponding to the row and
to the column. Let \( F : \mathbb{R}^{m \times n} \rightarrow \mathbb{C}^{m \times n} \) be the bidimensional DFT of \( F \):

\[
[F(F)]_{\omega} = \frac{1}{\sqrt{N}} \sum_{u_x \in [m]} \sum_{u_y \in [n]} F(u_x, u_y) e^{-2\pi i (\omega_x \frac{u_x}{m} + \omega_y \frac{u_y}{n})}.
\]

Defined a set of \( M \ll N \) frequencies \( \Omega = \{\omega^{(k)} = (\omega_x^{(k)}, \omega_y^{(k)}) : k \in \{1, \ldots, M\}\} \), our aim is to recover the image \( F \) from partial frequency information \( y = [F(F)]_{\Omega} \).

3.2. Gradient-based image recovery

Using the properties of the Fourier transform, it can be shown that the Fourier measurements of image gradient can be obtained by a diagonal transformation of the Fourier transform of the original image. More specifically,

\[
y_x = \Lambda_x y = F_{\Omega}(\nabla_x F) \quad y_y = \Lambda_y y = F_{\Omega}(\nabla_y F)
\]

where \( \Lambda_x = \text{diag}(1 - e^{-2\pi i \omega_x / N}) \). Classical gradient-based recovery algorithms, as GradientRec-Diff [6], estimate the gradients via Basis Pursuit (BP)

\[
\min \|\nabla_x F\|_1, \quad \text{s.t.} \quad F_{\Omega}(\nabla_x F) = y_x
\]

\[
\min \|\nabla_y F\|_1, \quad \text{s.t.} \quad F_{\Omega}(\nabla_y F) = y_y
\]

3.3. Gradient estimation

3.2.1. Curl-constrained \( \ell_1 \) minimization

In the proposed algorithm, we impose the curl of the reconstructed gradient field to be equal to zero. This yields the solution of the following optimization problem:

\[
\arg \min_{g_x, g_y \in \mathbb{R}^{m \times n}} \|g_x\|_1 + \|g_y\|_1 \quad \text{s.t.} \quad \begin{cases} y_x = F_{\Omega}(g_x) \\ y_y = F_{\Omega}(g_y) \\ \Lambda_y g_x - \Lambda_x g_y = 0 \end{cases}
\]

Different CS recovery algorithms can be used for edge reconstruction, such as OMP [7], CoSaMP [8], \( \ell_p \)-minimization methods with \( p < 1 \) [9], iteratively reweighted \( \ell_1 \)-minimization algorithms [10].

3.2.2. Iteratively reweighted \( \ell_1 \)-CCGE with Gaussian weights

In order to obtain high quality CS reconstruction, we modify the CCGE problem using both local smoothness and nonlocal self-similarity. More precisely, we consider the following weighted \( \ell_1 \)-problem

\[
\arg \min_{g_x, g_y \in \mathbb{R}^N} \sum_{i \in V} w([g_x]_i) \|g_x\|_1 + w([g_y]_i) \|g_y\|_1 \quad \text{s.t.} \quad \begin{cases} y_x = F_{\Omega}(g_x) \\ y_y = F_{\Omega}(g_y) \\ \Lambda_y g_x - \Lambda_x g_y = 0 \end{cases}
\]

where \( w(x) = e^{-\frac{x^2}{\sigma^2}} \) is the Gaussian kernel weighting function. It should be noted that this non-convex optimization
problem is quite difficult to solve directly due to the non-differentiability and non-linearity. In this section, the iteratively reweighted $\ell_1$-CCGE algorithm is developed to solve (5). We initialize $g_x^{(0)} = g_y^{(0)} = 0$, then at each iteration $t \in \mathbb{N}$ we compute

$$w_x^{(t)} = e^{-\left(\frac{(y_x^{(t)})^2}{\sigma_x^2}\right)}, \quad w_y^{(t)} = e^{-\left(\frac{(y_y^{(t)})^2}{\sigma_y^2}\right)}.$$  

$$g^{(t+1)} = \arg\min_{g_x,g_y \in \mathbb{R}^V} \sum_{i \in V} \left[ w_x^{(t)} |g_x|_i + w_y^{(t)} |g_y|_i \right]$$  

s.t. \begin{align*}
y_x &= \mathcal{F}_\Omega(g_x) \\
y_y &= \mathcal{F}_\Omega(g_y) \\
A_y g_x - A_x g_y &= 0.
\end{align*}

3.3. From gradient to image

Let $\hat{g} \in \mathbb{R}^F$ be the vector collecting the estimated gradient field. We have $\hat{g} = Af + \xi$, where $\xi$ is the error obtained on the gradient estimation. Modeling the error $\xi$ as Gaussian noise, we take a least-squares approach for estimating the signal $f$ starting from measurements $\hat{g}$:

$$\min_{x \in \mathbb{R}^N} \frac{1}{2} \| Ax - \hat{g} \|^2_2.$$  

(6)

It should be noticed that, being $AE = 0$, the solution is not unique. The set of solutions of (6) is described in the following well-known lemma [11].

**Lemma 1 (LS estimator).** Let the graph $G$ be connected and let $\mathcal{L} := A^T A$ denote the Laplacian of the graph. The following facts hold:

- (a) $x$ is a solution to (6) if and only if $A^T A x = A^T \hat{g}$;
- (b) there exists a unique minimizer of (6) $\hat{x}$ with minimum $\| \hat{x} \|^2_2$;
- (c) $\hat{f} = \mathcal{L}^{1/2} \hat{g}$;
- (d) $E[\hat{f}] = (I - \frac{1}{N} \mathbb{1} \mathbb{1}^T) f$.

It should be noted that determining the signal $\hat{f}$ from relative measurements is only possible up to an additive constant. This ambiguity can be avoided by taking $\tilde{f} = \hat{f} + \frac{1}{N} \mathbb{1} f/N$. It should be remarked that if $0 \in \Omega$ the second term is equal to $y(0)/\sqrt{N}$ leading to $\tilde{f} = \hat{f} + y(0) 1/\sqrt{N}$. These preliminary results yield the following theorem, whose proof is omitted for brevity.

**Theorem 1.** Let $\tilde{g} \in \mathbb{R}^F$ be the estimated gradient field and assume that $0 \in \Omega$, $U$ eigenvectors of the Laplacian of the square grid, and $D$ the diagonal matrix of corresponding eigenvalues. Then $\hat{f} = UD^1 U^T \tilde{g} + \frac{y(0)}{\sqrt{N}}$.

The $N = mn$ eigenvalues of the Laplacian of the square grid graph (contained in the diagonal of $D$) and the corresponding eigenvectors (collected as columns of $U$) can be evaluated analytically and it can be shown that the eigenvectors of this matrix are exactly the DCT Type II basis vectors (see [12]). Hence, the procedure to recover the image from the estimated gradient field can be efficiently implemented via the bidimensional DCT: given $\tilde{g}$, first $A^T \hat{g}$ is resized to match the size of the image; then the direct and inverse DCT are performed as stated in the following theorem.

**Theorem 2.** Let $\tilde{f} \in \mathbb{R}^F$ be the estimated gradient field and assume that $0 \in \Omega$, $\Lambda$ the eigenvalues of the Laplacian of the square grid. Then

$$\tilde{f} = \text{IDCT}_2 \left[ (A^T \odot \text{DCT}_2 \left[ \text{vec}^{-1}(A^T \tilde{g}) \right] + y(0) \frac{1}{\sqrt{N}} \right],$$  

(7)

where $\Lambda_{s,t} = 4 \sin^2 \left( \frac{\pi s}{2m} \right) + 4 \sin^2 \left( \frac{\pi t}{2n} \right)$, with $s \in [m]$ and $t \in [n]$ and $\odot$ denotes the elementwise product.

4. NUMERICAL RESULTS

In this section we test the following algorithms: (a) $\ell_1$-CCGE–LS (i.e., the algorithm recovering the gradient of the image as in Section 3.2.2 (with three iterations) and reconstructing the image using (7)); (b) CoSaMP–CCGE–LS (i.e., the algorithm recovering the gradient of the image solving (4) using CoSaMP and reconstructing the image using (7)); (c) GradientRec–Diff [6], which first separately estimates the gradient on rows and the gradient on columns using (2), then reconstructs the image from its gradient using an integration method based on diffusion tensors [13]; (d) RecPF [5] for TV minimization. We report, as benchmark, the reconstruction results of an Oracle device, which solves (5) in a single step using $w(\text{vec}(\nabla F)) := \exp(-\frac{\text{vec}(\nabla F)^2}{2\sigma^2})$. In this sense, the performance of the Oracle provides the best performance achievable by $\ell_1$-CCGE–LS.

We use as test image the $64 \times 64$ Shepp–Logan phantom, for different values of the compression ratio $L = M/N \in [0.01, 0.4]$. Three different undersampling patterns are used, namely, a radial sampling pattern, a uniformly-distributed sampling pattern and a variable-density sampling pattern (see [3, 14]). The performance of the algorithms have been evaluated in term of relative error $\text{Err} := \| f - \tilde{f} \|_2 / \| f \|_2$, where $\tilde{f}$ is the estimated image and $f$ is the true image.

For the algorithms requiring the $\ell_1$ norm minimization, i.e., the proposed $\ell_1$-CCGE–LS and GradientRec–Diff, SPGL1 [15, 16] is used to solve the Basis Pursuit problem. Finally, it has to be remarked that a failure in the reconstruction, i.e., a solver giving a Not-a-Number (NaN) as output, is treated as the algorithm returned a totally black image (all 0s), corresponding to a relative error of 1.

In Figure 1 the radial sampling pattern is used to collect measurements. It can be noticed that the proposed CCGE–LS algorithms are the ones showing the best performance, with almost perfect reconstruction for $L \geq 0.17$. RecPF reaches its optimum performance for $L \geq 0.2$ while GradientRec–Diff performs better than RecPF for $L > 0.27$, confirming the
Fig. 1. Phantom $64 \times 64$: Relative reconstruction error vs. Compression Ratio for radial sampling patterns.

behavior obtained in [6]. There is a performance gap between the Oracle and the CCGE–LS.

Figure 2 visually shows the reconstruction error for $L = 0.17$. It can be noticed that the reconstruction obtained by the proposed CCGE–LS algorithms are almost perfect, with a relative error of $10^{-7}$. RecPF shows an acceptable reconstruction quality ($10^{-2}$), even if some edge-related artifacts can be noticed. On the other hand, the reconstruction quality of GradientRec–Diff is significantly worse for $L = 0.17$.

Fig. 2. Reconstruction error of image of Phantom $64 \times 64$ image obtained via gradient-based recovery methods. (a) Radial sampling pattern with compression Ratio $L = 0.17$. (b) GradientRec–Diff: $\text{Err} = 3.02$. (c) RecPF: $\text{Err} = 3.75 \cdot 10^{-2}$. (d) $\ell_1$-CCGE–LS: $\text{Err} = 2.89 \cdot 10^{-7}$. (e) Oracle: $\text{Err} = 2.89 \cdot 10^{-7}$. (f) CoSaMP-CCGE–LS: $\text{Err} = 6.24 \cdot 10^{-7}$.

For uniformly distributed sampling pattern the results are shown in Figure 3. The results correspond to the average of 50 tests with different realizations of the sampling pattern. Here, it can be noticed that the $\ell_1$-CCGE–LS algorithm is the one performing best, with almost-perfect reconstruction for $L \geq 0.14$ and reduced performance gap with respect to the Oracle. The CoSaMP-CCGE–LS performs slightly worse, with perfect reconstruction for $L \geq 0.19$, while GradientRec–Diff performs as in the radial sampling case, achieving its best result for $L \geq 0.28$. On the contrary, RecPF seems to suffer the uniformly distributed sampling pattern and could not reconstruct the signal.

Fig. 3. Phantom $64 \times 64$: Relative reconstruction error vs. Compression Ratio. Random uniform sampling.

Fig. 4. Phantom $64 \times 64$: Relative reconstruction error vs. Compression Ratio. Variable density sampling.

Finally, we show in Figure 4 the results for the variable density sampling pattern. The results correspond to the average of 50 tests with different realizations of the sampling pattern. Again, the proposed CCGE–LS algorithms are the ones performing best, showing perfect reconstruction for $L \geq 0.15$, even if for $L \geq 0.29$ GradientRec–Diff performs slightly better than CoSaMP-CCGE–LS, while RecPF reaches its best performance for $L \geq 0.17$ even if with a higher error floor.

5. CONCLUDING REMARKS

In this paper, we have proposed new gradient based image recovery algorithms which combine constrained CS algorithms using curl information of gradient field with spectral graph filtering. Through extensive simulation, we have shown that the proposed algorithms outperform the state of the art also for small sampling ratio. Moreover, they are the least sensitive to the sampling pattern.
6. REFERENCES


