BLIND SOURCE SEPARATION FOR OPERATOR SELF-SIMILAR PROCESSES

Hui Li (Advisor: Gustavo Didier)

Department of Mathematics, Tulane University

1. MOTIVATION

Self-similarity and operator self-similarity. An \mathbb{R}^n-valued signal $\{Y(t)\}$ is said to be operator self-similar (o.s.s) when it satisfies the scaling relation $\{Y(at)\}_{t \in \mathbb{R}} \overset{\text{fd}}{=} \{a^H Y(t)\}_{t \in \mathbb{R}}$, $a > 0$, where fd denotes the finite dimensional distributions, H is called the Hurst matrix, and a^H is given by the matrix exponential $\sum_{k=0}^{\infty} \log^k(a) H_k$. O.s.s processes naturally generalize the univariate self-similar (s.s) processes, which have been used to model a wide range of phenomena in hydrodynamic turbulence [1], geophysics [2] and Internet traffic [3].

Gaussian case. The celebrated fractional Brownian motion (fBm) is the only Gaussian, self-similar process with stationary increments [4]. The natural multivariate generalization of fBm, called operator fBm (ofBm), was studied in [5, 6], and several papers are now devoted to inferential methods for ofBm (e.g., [7, 8]).

Non-Gaussian case. Hermite processes are typically non-Gaussian, self-similar, stationary increment processes. They appear as a consequence of non-central limit theorems. The Rosenblatt process (or fractional Rosenblatt motion, fRm) corresponds to the Hermite process of rank 2 [9]. Statistical inference for Hermite-type processes is particularly challenging: it was shown that wavelet-based estimators may display nonstandard convergence rates and asymptotic distributions in [10]. The modeling and statistical inference of multivariate Hermite-type fractional signals, while of great importance in applications, is an essentially unexplored research topic.

Outline. This thesis is dedicated to the problem of demixing (multivariate) fractional signals, i.e., extracting a source of independent s.s signals from a set of mixed signals. This blind source problem has been little studied under the framework of fractional stochastic processes. The work considers mainly two types of signals: Gaussian and non-Gaussian (Rosenblatt-type). The basic philosophy is to apply the same wavelet-based demixing procedure to these two types of signals (Section 2). Large size Monte Carlo simulations are used to illustrate that the finite-sample performance of the demixing method is very satisfactory (Section 4). Moreover, the asymptotic properties of the estimators will be studied for Gaussian and non-Gaussian cases separately (Section 3).

2. METHODOLOGY

Blind source separation. For $p = 1, \ldots, P$, let X_{H_p} be a stationary-increment, s.s process with Hurst parameter $H_p \in (0, 1)$. Let W be a $P \times P$ invertible matrix, $H = (H_1, \ldots, H_P)^T$ and T denotes the vector transpose. Then, the process $\{Y(t)\}$ obtained by $Y(t) = W (X_{H_1}(t), \ldots, X_{H_P}(t))^T$ is o.s.s with Hurst matrix $H_W = W \text{diag}(H) W^{-1}$. In practice, we only observe the mixed process \tilde{Y} and need to estimate both W and H.

Wavelet-based demixing procedure. The wavelet transform of an o.s.s process $Y(t)$ is defined by

$$\mathbb{R}^P \ni D(2^j, k) = 2^{-j/2} \int_{\mathbb{R}} 2^{-j/2} \psi(2^{-j} t - k) Y(t) dt, \quad j \in \mathbb{N} \cup \{0\}, k \in \mathbb{Z}.$$ (1)

The mother wavelet function $\psi(t)$ is characterized by its number of vanishing moments N_{ψ}, i.e., the integer N_{ψ} such that $\forall n = 0, \ldots, N_{\psi} - 1, \int_{\mathbb{R}} t^n \psi(t) dt = 0$ and $\int_{\mathbb{R}} t^{N_{\psi}} \psi(t) dt \neq 0$ [11]. The wavelet spectrum at scale 2^j is the positive definite matrix $\mathbb{E} D(2^j, 0) D(2^j, 0)^* = : \mathbb{E} W(2^j)$, and its natural estimator, the sample wavelet transform, is the matrix statistic

$$W(2^j) = \frac{1}{n_j} \sum_{k=1}^{n_j} D(2^j, k) D(2^j, k)^*, \quad n_j = \frac{\nu}{2^j}, \quad (2)$$

where ν is the number of sample points. By operator self-similarity, we can write that

$$\mathbb{E} W(2^j) = W \mathcal{E}^{1/2} \text{diag}(2^{2H_1}, \ldots, 2^{2H_P}) \mathcal{E}^{1/2} W^*.$$ (3)

where $\mathcal{E} = \text{diag}(\eta(H_1), \ldots, \eta(H_P))$, and for $i = 1, \ldots, P$,

$$\eta(h_i) = -\sigma_i^2 \int_{\mathbb{R}^2} \psi(t) \psi(t') \frac{|t - t'|^{2H_i}}{2} dt dt'.$$

Equation (3) illustrates the fact that the matrices $\mathbb{E} W(2^j)$ can be jointly diagonalized. In [12], we applied an exact joint diagonalization method to arrive at an estimator of the demixing matrix W^{-1}. The algorithm can be cast in the form of pseudocode as follows:

Step 0: From one observation \tilde{Y}, sample wavelet variances $W_{\tilde{Y}}(2^{J_1})$ and $W_{\tilde{Y}}(2^{J_2})$ are computed as in Eq. 2 for suitable J_1 and J_2;

Step 1: Set $\Theta = W_{\tilde{Y}}(2^{J_1})^{-1/2}$;

Step 2: Find eigenvectors Q of the matrix $\Theta W_{\tilde{Y}}(2^{J_2}) \Theta^*$;

Step 3: Compute the demixing matrix $B := Q \Theta$.

The estimator of the demixing matrix \hat{W}^{-1} is defined to be the output of the demixing algorithm. Then, the demixed process \(\{Z(t)\} \) is obtained by $Z(t) = \hat{W}^{-1}Y(t)$, where (entry-wise) univariate wavelet regression can be applied to estimate the Hurst parameters H_1, \ldots, H_P [13].

3. ASYMPTOTIC THEORY

Gaussian case. For $p = 1, \ldots, P$, let X_{H_p} be a fBm with Hurst parameter $H_p \in (0, 1)$. Then, the mixed signal \(Y(t) = W(X_{H_1}(t), \ldots, X_{H_P}(t))^T \) is an oBm. The sample wavelet variance (2) was shown to be asymptotically Gaussian [7]. By building upon this result, we proved that the asymptotic distributions of the eigenvalues/vectors of the sample wavelet variance W_Y are Gaussian ([14]), as well as that of the demixing matrix estimator \hat{W}^{-1} are Gaussian ([14]).

Non-Gaussian case (work in progress). Suppose every X_{H_p} is a fRm with Hurst parameter $H_p \in (\frac{1}{2}, 1)$, we define the multivariate operator fractional Rosenblatt motion (oRm) as the \mathbb{R}^P-valued process $Y(t) = W(X_{H_1}(t), \ldots, X_{H_P}(t))^T$. We will study the asymptotic distributions of the wavelet variance and their eigenvalues/vectors, as well as that of the demixing matrix estimator. In particular, the convergence rate expected to depend on the underlying Hurst eigenvalues. Moreover, we will also study the case where the unmixed, original signals are independent fBms and fRms, i.e., it combines Gaussian and non-Gaussian components.

4. SIMULATION PERFORMANCE

Broad Monte Carlo studies showed that the demixing method works very well, over finite-samples, for both Gaussian and non-Gaussian instances, or combinations thereof. This can be illustrated based on the case where $P = 4$, the sample path size is $\nu = 2^{16}$, and the original signal is made up of 4 independent s.s processes (2 fBms with Hurst parameters 0.2 and 0.4 and 2 fRms with Hurst parameters 0.6 and 0.8), the mixed process was given by $Y = WX$ (X is then a mixture of fBms and fRms). Figure 1 shows boxplots for the Monte Carlo distributions for each of the 4×4 entries of $\hat{W}^{-1} - W^{-1}$. This indicates that \hat{W}^{-1} is remarkably well estimated with negligible biases. This results are reported for one arbitrarily chosen matrix W, since the performance for all instances of W was comparable. Monte Carlo studies not included further indicate that the demixing method also works well for pure oBm and oRm, and remains efficient even for relatively small sample size (down to $\nu = 2^{10}$).

5. REFERENCES

