MAXIMALLY IMPROPER INTERFERENCE IN UNDERLAY COGNITIVE RADIO NETWORKS

Christian Lameiro⋆, Ignacio Santamaría†, Wolfgang Utschick‡ and Peter J. Schreier⋆

⋆ Signal and System Theory Group, Universität Paderborn, Germany, http://sst.upb.de
† Advanced Signal Processing Group, Universidad de Cantabria, Spain, http://gtas.unican.es
‡ Associate Institute for Signal Processing, Technische Universität München, Germany, http://www.msv.ei.tum.de

ABSTRACT
It is well-known that the use of improper signaling schemes can be beneficial in interference-limited networks. Here we consider an underlay cognitive radio scenario, where a multi-antenna primary user is protected by an interference temperature constraint that ensures a prescribed rate requirement. We study how the interference temperature threshold changes when the interference is constrained to be maximally improper. Since the spatial structure of the impropriety is an additional degree of freedom, we provide the maximum value of the interference threshold that ensures the rate requirement. We illustrate the potential payoffs of improper signaling with some numerical examples, which show that a secondary user can significantly improve its achievable rate with respect to the proper signaling case.

Index Terms—Improper signaling, interference temperature, underlay cognitive radio.

1. INTRODUCTION
It has been shown recently that improper Gaussian signaling, i.e., the transmission of Gaussian signals whose real and imaginary parts are correlated or have unequal power, can be beneficial in interference-limited networks. This was first observed in the degrees-of-freedom (DoF) study of the interference channel (IC) [1], where improper signaling was shown to increase the achievable DoF in the 3-user IC with constant channel coefficients. Similar results were derived for the 4-user IC in [2]. Several works have followed, showing rate improvements and proposing improper signaling schemes for different interference networks, such as the 2-user single-input single-output (SISO) IC [3, 4], the K-user SISO [5, 6] and multiple-input single-output (MISO) [7] ICs, and the Z-IC [8]. Improper signaling has also been shown to be beneficial in other scenarios, such as the broadcast channel with linear precoding [9], or the interference broadcast channel [10].

This work analyzes the impact of improper signaling in underlay cognitive radio (UCR) networks [11]. In UCR scenarios, the primary user (PU) is typically protected by an interference temperature (IT) or interference power constraint, so that the so-called secondary users (SUs) can access the channel as long as they ensure that the interference power is below the threshold [12, 13]. Since the performance of the SUs is limited by interference (in this case, by the interference they cause to the primary receivers), they may benefit from transmitting improper Gaussian signals. In our previous work [14, 15], we analyzed the payoffs of improper signaling in a scenario comprised of an SU and a PU, both single-antenna. In such a scenario we showed that, when the PU transmits proper Gaussian signals and has a rate requirement, the instantaneous rate of the SU increases, under certain conditions, when we allow it to transmit improper signals.

In this paper we extend our analysis to the multi-antenna case, where the spatial structure of the interference strongly affects the PU performance, and, consequently, the IT threshold. Thus, we derive the maximum value of the IT threshold when the interference is constrained to be maximally improper, which is achieved when the spatial structure of the improper interference is the least detrimental to the PU. Consequently, an SU operating under such a constraint must also design its transmission scheme such that the structure of the interference’s impropriety matches the best-case signature. Finally, we illustrate the potential benefits in terms of SU rate for a simple yet illustrative secondary network.

2. SYSTEM MODEL

2.1. Preliminaries
We start with some definitions and properties of improper complex random vectors that will be used throughout the paper. We refer the reader to [16] for a comprehensive treatment of the subject.

The complementary covariance matrix of a complex random vector x is defined as $\bar{R}_{xx} = \mathcal{E}\{xx^T\}$, where $\mathcal{E}\{\cdot\}$ denotes expectation. If $R_{xx} = 0$, we call x proper, otherwise improper. Without loss of generality, the complementary covariance matrix can be expressed as [16, Section 3.2.3]

$$\bar{R}_{xx} = R_{xx}^{\frac{1}{2}} FCF^T R_{xx}^{\frac{1}{2}},$$

(1)
where $R_{xx} = \mathcal{E}\{xx^H\}$ is the covariance matrix, F is a unitary matrix, which we will call improper signature matrix, and C is a diagonal matrix containing the circularity coefficients, which measure the degree of improper and belong to the range $[0, 1]$. If $C = I$, we call x maximally improper. Finally, it is usually useful to express the second-order statistics of x through the augmented covariance matrix, which is defined as

$$R_{xx} = \mathcal{E}\{xx^H\} = \begin{pmatrix} R_{xx} & R_{xx}^* \\ R_{xx}^* & R_{xx}^* \end{pmatrix},$$

where $x = [x^T \ x^H]^T$.

2.2. System description

Let us consider a multiple-input multiple-output (MIMO) PU link, where both transmitter and receiver are equipped with N antennas. Denoting by $H \in \mathbb{C}^{N \times N}$ and $Q \in \mathbb{S}^N_+$ the MIMO channel and transmit covariance matrix, respectively, and assuming that the receiver observes an interference covariance matrix given by $K \in \mathbb{S}^N_+$, the achievable rate of this link can be written as

$$R(K) = \log_2 \left| I + (\sigma^2 I + K)^{-1} HQH^H \right|,$$

where σ^2 is the noise power and \mathbb{S}^N_+ denotes the set of $N \times N$ positive-semidefinite Hermitian matrices. Let us also assume that this user has a minimum rate requirement to be satisfied, expressed as

$$R(K) \geq \bar{R},$$

for a given Q. An interesting question at this point is to determine the maximum tolerable interference power in order to achieve the foregoing rate constraint. That is, what is the maximum t such that $R(K) \geq \bar{R}$ for all $K \in \mathbb{S}^N_+$ satisfying $\text{Tr}(K) \leq t$? An answer to this question was already provided in [17], where it was shown that the problem is equivalent to finding the worst-case interference covariance matrix, for which a closed-form expression was derived. The interference limit obtained this way provides the optimal protection for which a closed-form expression was derived. The interference power limit for the maximally improper case, t_{max}. From the standpoint of the secondary network this implies a trade-off that must be further analyzed. That is, the interference limit is higher but the secondary network must transmit a maximally improper signal such that the interference complementary covariance matrix matches the structure of the optimal improper signature. This trade-off will be studied numerically in the next section.

The interference power limit for the maximally improper case, t_{max}, can be computed through the following optimization problem

$$\mathcal{P}: \quad \text{maximize} \quad t,$$

subject to

$$\text{max}_F R(K, F) \geq \bar{R}, \quad \forall \ K \in \mathcal{K}_t,$$

where the set \mathcal{K}_t is defined as

$$\mathcal{K}_t = \{ K \geq 0 : \text{Tr}(K) \leq t \}.$$ \hspace{1cm} (8)

Let us now present the following lemma, which provides some insights into the optimal solution of \mathcal{P}.

\hspace{1cm} [It has been shown [14] that, whenever improper signaling is beneficial, maximally improper signaling is optimal.]
Lemma 1. For a given Q, let $\phi_1 \geq \phi_2 \geq \ldots \geq \phi_N$ and Γ be the eigenvalues and the matrix of eigenvectors of HQH^T, respectively. Then,

$$\min_{K \in \mathbb{K}_c} \max_{F \in \mathbb{U}^N} R(K, F) = \min_{\sum_{i=1}^N \lambda_i \leq t} \frac{1}{2} \sum_{i=1}^N \log_2 \left[1 + \frac{\phi_i}{\sigma^2} \left(\frac{\lambda_i + \phi_i}{\sigma^2 + 2\lambda_i} \right) \right],$$

where \mathbb{U}^N is the set of $N \times N$ unitary matrices. The improper signature matrix leading to (9) is $F = \Gamma$.

Proof. Due to the lack of space, we only provide a sketch of the proof. Let $HQH^T = \Gamma \Phi \Gamma^T$ be the eigenvalue decomposition (EVD). Using majorization (we refer the interested reader to [18]), it can be shown that $F = \Gamma P^2$ and $K = \Gamma \Lambda \Gamma^T$ hold for the optimal solution, where P is a symmetric permutation matrix and $\Lambda = \text{diag}(\lambda_1, \ldots, \lambda_N)$ is the matrix of eigenvalues of K. Consequently $K = \Gamma \Lambda^2 \Sigma^2 \Gamma^T$, which yields

$$\min_{K \in \mathbb{K}_c} \max_{F \in \mathbb{U}^N} R(K, F) = \min_{\sum_{i=1}^N \lambda_i \leq t} \frac{1}{2} \sum_{i=1}^N \log_2 \left[1 + \frac{\phi_i}{\sigma^2} \left(\frac{\lambda_i + \phi_i}{\sigma^2 + 2\lambda_i} \right) \right],$$

where π is a symmetric permutation, i.e., $\pi(i) = j \iff \pi(j) = i$. Notice that π selects those pairs of signal modes that are correlated in the improper sense. To prove the lemma, we have to show that the optimal permutation satisfies $\pi(i) = i$, $i = 1, \ldots, N$. To this end, let us consider an arbitrary permutation such that $\pi(i) = j$ (and $\pi(j) = i$), $i \neq j$. The ith and jth contributions to the summation in (10) are given by

$$r_{ij} = \frac{1}{2} \log_2 \left[1 + \frac{\phi_i + \phi_j}{\sigma^2} \left(\frac{\lambda_i + \phi_i}{\sigma^2 + 2\lambda_i} \right) \right].$$

Now we show that r_{ij} increases if we take permutation π', with $\pi'(i) = i$ and $\pi'(j) = j$. Notice that applying π' is equivalent to swapping ϕ_i and λ_i of the first term in (11) with those of the second term. To this end, let us first swap ϕ_i with ϕ_j. Comparing the derivatives of the first and second terms of (11) with respect to ϕ_i and ϕ_j, respectively, it follows that r_{ij} increases if $\phi_i + \lambda_i > \phi_j + \lambda_j$. Assuming, without loss of generality, that $\phi_i \geq \phi_j$, it is easy to see through (11) that $\lambda_i \geq \lambda_j$ must hold for the optimal solution, hence $\phi_i + \lambda_i > \phi_j + \lambda_j$ holds and, consequently, r_{ij} increases.

Second, once ϕ_i and ϕ_j have been swapped, it can be shown by taking the derivatives that swapping λ_i with λ_j keeps r_{ij} unchanged. As a result, π' increases the cost function with respect to π. Applying this procedure to all other pairs, we obtain that $\pi(i) = i$, $i = 1, \ldots, N$ is optimal, which yields (9) and concludes the proof.

Lemma 1 can be interpreted as follows. For the optimal improper signature, the interference at each transmission mode is a maximally improper signal, but there is no correlation among different signal modes. In other words, the PU transmission can be decomposed into a set of N signal modes each of them affected by a maximally improper interference. Now we formalize the solution of P in the following theorem.

Theorem 1. For a given Q, let $\phi_1 \geq \phi_2 \geq \ldots \geq \phi_N$ and Γ be the eigenvalues and the matrix of eigenvectors of HQH^T, respectively. Then, the optimal solution of P is

$$t_{max} = \text{Tr} (K_{max}),$$

where $K_{max} = \Gamma \Lambda_{max} \Gamma^T$ is the worst-case interference covariance matrix. Λ_{max} is a positive diagonal matrix whose entries are given by a multilevel water-filling as

$$\lambda_{max[i]} = \frac{1}{2} \left(\sqrt{\phi_i \left(\frac{1}{4} \phi_i + \mu \right)} - \left(\frac{1}{4} \phi_i + \sigma^2 \right) \right)^+,$$

where μ is such that the rate constraint holds with equality.

Proof. By [17, Lemma 1], the optimal solution of P can be obtained through the following equivalent problem

$$\min_{\pi, K} \quad t,$n

subject to $\max_{K} R(K, F) \leq \tilde{R},$

$$K \in \mathbb{K}_c.$$

Notice that the above problem consists of finding the worst-case interference covariance matrix, K. Consequently, by Lemma 1, P_{eq} can equivalently be written as

$$\min_{\pi, K} \quad \sum_{i=1}^N \lambda_i,$n

subject to $\sum_{i=1}^N \frac{1}{2} \log_2 \left[1 + \frac{\phi_i}{\sigma^2} \left(\frac{\lambda_i + \phi_i}{\sigma^2 + 2\lambda_i} \right) \right] \leq \tilde{R},$

$$\lambda_i \geq 0, \quad i = 1, \ldots, N.$$

Since the above problem is convex and satisfies Slater’s condition [19], we can find its optimal solution by solving the dual problem. Finally, the Karush-Kuhn-Tucker (KKT) conditions of P_{eq} yield (12) and (13), which concludes the proof.
4. NUMERICAL EVALUATION

In this section, we provide some numerical examples showing the potential benefits of an improper interference in terms of SU rate. To this end, we consider a simple secondary network, comprised solely of a point-to-point SU equipped with N antennas at both sides of the link (i.e., same model as the PU link), hence the whole network can be regarded as a 2-user IC. The transmit covariance matrix of the SU is optimized to maximize its achievable rate subject to the transmit power and interference temperature constraints. As a suboptimal but simple procedure, we first optimize the transmit covariance matrix considering a proper transmission, and then adjust the transmit complementary covariance matrix to match the improper signature $F = \Gamma$.

We define the transmit signal-to-noise ratio (SNR) of the PU and SU respectively as $\text{SNR}_\text{PU} = \frac{P_{\text{PU}}}{\sigma^2}$ and $\text{SNR}_\text{SU} = \frac{P_{\text{SU}}}{\sigma^2}$, being P_{PU} and P_{SU} the PU and SU power budgets, respectively, and we take $\sigma^2 = 1$ without loss of generality. We consider that each entry of the $N \times N$ channel matrices is independently distributed as a proper complex Gaussian random variable with zero mean and unit variance, except for the SU-PU channel, whose variance is set to σ^2. For all simulations, we will consider $N = 4$, $\text{SNR}_\text{SU} = 20$ dB and $\tilde{R} = \alpha \bar{R}(0)$, with $0 \leq \alpha \leq 1$.

First we compare the IT thresholds for the proper and maximally improper cases. Figure 1 shows the ratio between proper and improper signaling IT as a function of α, where a significant increase can be observed, especially for low values of α and high SNR_PU values. To show the impact on the rates, Fig. 2 depicts the achievable rate of three different transmission schemes: the conventional proper scheme, the maximally improper scheme derived in Section 3, and an adaptative scheme; for $\alpha = 0.6$ and two different SU-PU channel gains: $\sigma^2 = 1$ and $\sigma^2 = 10$. The adaptative scheme follows the transmission scheme leading to the highest rate, i.e., proper or maximally improper. Notice that this scheme can easily be performed if the PU informs the SU about the two IT thresholds, so that no additional channel state information (CSI) is required at the SU. For $\sigma^2 = 1$, maximally improper signaling provides significant gains for SNR_SU higher than 10 dB. For low SNR (low power budget), improper signaling does not yield any gain on average since proper signaling permits maximum power transmission in most channel realizations, which does not leave much room for improvement. Notice, however, that the adaptative scheme is always beneficial and does not require any additional CSI. When the interference is more significant ($\sigma^2 = 10$), improper signaling provides a substantial increase in achievable rate in the whole SNR regime. Indeed, the proper scheme achieves a very low rate since the interference level at the PU is too high. In such a case, the maximally improper signaling scheme is much more capable of handling the interference, which is in agreement with the results of our previous work [14].

5. CONCLUSION

In this paper, we have studied how the IT threshold for a MIMO PU changes when we constrain the interference to be maximally improper. We have observed that the improper signature matrix, which controls the spatial structure of the imprropriety, affects the interference power threshold. Therefore, we have derived the maximum tolerable interference power for the optimal improper signature, which has resulted in a maximally improper interference at each eigenmode of the PU. Additionally, the interference must be further constrained to match this specific improper signature matrix. Simulations have shown that this maximally improper scheme may provide significant improvements with respect to the proper signaling case. In light of the results, we will consider in future work the analysis of joint spatial-improper shaping constraints, to further improve the performance over conventional proper and spatially-unconstrained interference.
6. REFERENCES

