COMMON FATE MODEL FOR UNISON SOURCE SEPARATION

Fabian-Robert Stöter⋆ Antoine Liutkus† Roland Badeau‡ Bernd Edler⋆ Paul Magron†

⋆ International Audio Laboratories Erlangen⋆
† Inria, speech processing team, Villers-les-Nancy, France
‡ Institut Mines-Télécom, Télécom ParisTech, CNRS LTCI, France

ABSTRACT
In this paper we present a novel source separation method aiming to overcome the difficulty of modelling non-stationary signals. The method can be applied to mixtures of musical instruments with frequency and/or amplitude modulation, e.g., typically caused by vibrato. It is based on a signal representation that divides the complex spectrogram into a grid of patches of arbitrary size. These complex patches are then processed by a two-dimensional discrete Fourier transform, forming a tensor representation which reveals spectral and temporal modulation textures. Our representation can be seen as an alternative to modulation transforms computed on magnitude spectrograms. An adapted factorization model allows to decompose different time-varying harmonic sources based on their particular common modulation profile: hence the name Common Fate Model. The method is evaluated on musical instrument mixtures playing the same fundamental frequency (unison), showing improvement over other state-of-the-art methods.

Index Terms— Sound source separation, Common Fate Model, non-negative tensor factorization.

1. INTRODUCTION
Sound source separation continues to be a very active field of research [1] with a variety of applications. Many recent contributions are based on the popular non-negative matrix factorization (NMF). The way NMF factorizes a spectrogram matrix into frequency and activation templates makes it possible to easily design algorithms in an intuitive way. At the same time, it provides a rank reduction, needed to decompose mixtures into their source components. In the past, many NMF-based source separation methods have been developed [2–4]. Expanding the NMF to tensors allows to incorporate more complex models, useful in many applications like multichannel separation. Extensions to NMF such as shift-invariance or convolutions were carried over to non-negative tensor (NTF) based algorithms [5–9]. These approaches, relying on decomposing mixtures of musical instruments, work well when certain assumptions hold to be true. One is that spectral harmonics only partially overlap. However, when two sources share the same fundamental frequency, almost all partials do overlap, making it difficult for NMF-based algorithms to learn unique templates. Another assumption is that all spectral and temporal templates semantically correspond to musical notes, forming a dictionary of musically meaningful atoms. This does not hold for instruments with time-varying fluctuations. These effects can typically be found in musical instruments like strings and brass, when played with vibrato. In a setting where two musical instruments with vibrato play in unison, both assumptions could break, which makes it a challenging scenario [10]. When processing such mixtures with a representation based on a standard NMF and the magnitude spectrogram, it is hard to model the sources with only a few spectral templates. Instead of increasing the number of templates per source, Hennequin proposes [11] frequency-dependent activation matrices by using a source/filter-based model. Since the vibrato does not only cause frequency modulation (FM) but also amplitude modulation (AM), so-called modulation spectra can be used to identify the modulation pattern. This is often calculated by taking the Fourier transform of a magnitude spectrum. Thus, the modulation spectrum has already gathered much attention in speech recognition [12,13] and classification [14,15]. Barker and Virtanen [16] were the first to propose a modulation tensor representation for single channel source separation. This allows to elegantly apply factorization on the tensor by using the well known PARAFAC/CANDECOMP (CP) decomposition.

In this work we introduce a novel tensor signal representation which additionally exploits similarities in the frequency direction. We can therefore make use of dependencies between modulations of neighbouring bins. This is similar to the recently proposed High-Resolution Nonnegative Matrix Factorization model that accounts for dependencies in the time-frequency plane (HR-NMF [17]). In short, HR-NMF models each complex entry of a time-frequency transform of an audio signal as a linear combination of its neighbours, enabling the modelling of damped sinusoids, along with an independent innovation. This model was generalized to multichannel mixtures in [18, 19] and was shown to provide considerably better oracle performance for source separation than alternative models in [20]. Indeed, even though some variational approximations were introduced in [21] to strongly reduce their complexity, those algorithms are often demanding for practical applications. In this paper, we propose to relax some assumptions of HR-NMF in the interest of simplifying the estimation procedure. The core idea is to divide the complex spectrogram into modulation patches in order to group common modulation in time and frequency direction. We call this the Common Fate Model (CFM), borrowing from the Gestalt theory, which describes how human perception merges objects that move together over time. Bregman [22] described the Common Fate theory for auditory scene analysis as the ability to group sound objects based on their common motion over time, as occurs with frequency modulations of harmonic partials. As outlined by Bregman, the human ability to detect and group sound sources by small differences in FM and AM is outstanding. Also, it turns out that humans are especially sensitive to modulation frequencies around 5 Hz, which is the typical vibrato frequency that many musicians produce naturally.
2. COMMON FATE MODELLING

2.1. The Common Fate Transform

Let \(\tilde{x} \) denote a single channel audio signal. Its Short-Term Fourier Transform (STFT) is computed by splitting it into overlapping frames, and then taking the discrete Fourier transform (DFT) of each one. The resulting information is gathered into an \(N_\omega \times N_\tau \) matrix written \(X \), where \(N_\omega \) is the number of frequency bands and \(N_\tau \) the total number of frames. In this study, we will consider the properties of another object, built from \(X \), which we call the Common Fate Transform (CFT). It is constructed as illustrated in Figure 1. We split the STFT \(X \) into overlapping rectangular \(N_a \times N_b \) patches, regularly spaced over both time and frequency. Then, the 2D-DFT of each patch is computed\(^2\). This yields an \(N_a \times N_b \times N_f \times N_t \) tensor we write \(x \), where \(N_f \) and \(N_t \) are the vertical and horizontal positions for the patches, respectively.

As can be seen, the CFT is basically a further short-term 2D-DFT taken over the standard STFT \(X \). One of the main differences compared to modulation spectrograms is that the CFT is computed using the complex STFT \(\tilde{X} \), and not a magnitude representation such as \(|X| \). As we will show, this simple difference has many interesting consequences, notably that the CFT is invertible: the original waveform \(\tilde{x} \) can be exactly recovered by cascading two classical overlap-add procedures. Another difference is that the patches span several frequency bins, \textit{i.e.} we may have \(N_a > 1 \). This contrasts with the conventional modulation spectrogram, that is usually defined using one frequency band only.

2.2. A Probabilistic Model for the CFT

When processing an audio signal \(\tilde{x} \) for source separation, it is very common to assume that all time-frequency (TF) bins of its STFT are independent \([23–26]\). This is often the consequence of two different assumptions. The first one is to consider that all frames are independent, thus leading to the independence of all entries of the STFT that do not belong to the same column. The second one is related to the notion of stationarity: roughly speaking, the Fourier transform is known to decompose stationary signals into independent components, whether these signals be Gaussian \([26]\) or, more generally, harmonisable \(\alpha \)-stable \([27]\). As a consequence, when the signals are assumed to be \textit{locally stationary}, it is theoretically sound to assume that all the entries of the STFT are independent.

Still, both assumptions can only be considered as approximations. First, adjacent frames are obviously not independent, notably because of the overlap between them. Second, the stationarity assumption is only approximate in practice, especially when impulsive elements are found in the audio, leading to strong dependencies among the different frequency bins. Let \(\{ X_{ft} \} \) denote all the \(N_a \times N_b \times N_f \times N_t \) patches taken on the STFT to compute the CFT, as depicted in Figure 1. The probabilistic model we choose is the combination of \(f \) different assumptions made on the distribution of these patches.

1. All patches are independent. Just as the classical locally stationary model \([26]\) assumes independence of overlapping frames, we assume here independence of overlapping patches. Due to the overlap between them, this assumption is an approximation, and one may wonder what the advantage is of dropping independent frames for independent patches. The answer lies in the fact that the latter permits us to model phase dependencies between neighbouring STFT entries, and also to model much longer-term dependencies, as required for instance by deterministic damped or frequency-modulated sinusoidal signals.

2. Each patch is \textit{stationary}: its distribution is assumed invariant under translations in the TF plane. This is where we do not assume independence, but on the contrary expect dependencies among neighbouring STFT entries. Our approach assumes this happens in a way that only depends on the relative positions in the TF plane. It can easily be shown that mixtures of damped sinusoids have this property. Assuming stationarity not only over time but over both time and frequency also permits us to naturally account for mixtures of frequency-modulated sounds. In short, we assume that throughout each patch, we observe one coherent STFT "texture". The difference with the HR-NMF model is that we have independent and identically distributed (i.i.d.) innovations for one given patch, whereas HR-NMF model has more variability and permits heteroscedastic innovations. However, taking overlapping patches somehow compensates for this limitation.

3. The joint distribution of all entries of each patch is \(\alpha \)-stable \([28]\). \(\alpha \)-stable distributions are the only ones that are stable under additions, \textit{i.e.} such that sums of \(\alpha \)-stable random variables (r.v.) remain \(\alpha \)-stable. They notably comprise the Gaussian and Cauchy distribu-

\(\cdots \)
tions as special cases when $\alpha = 2$ and $\alpha = 1$, respectively.

4. Each patch is harmonisable, i.e. is the inverse Fourier transform of a complex random measure with independent increments. In other words, all entries of the Fourier transform of each patch are assumed to be asymptotically independent, as the size of the patch gets larger. This rather technical condition, often tacitly made in signal processing studies, permits efficient processing in the frequency domain.

Under those four assumptions, all entries of the CFT x are independent (assumptions 1 and 2), and each one is distributed with respect to a complex isotropic α-stable distribution, noted $S_{\alpha}S_{\alpha}$ (assumptions 3 and 4):

$$x(a, b, f, t) \sim S_{\alpha}S_{\alpha}(P^\alpha(a, b, f, t)),$$

where P^α is a nonnegative $N_a \times N_b \times N_f \times N_t$ tensor that we call the modulation density. When $\alpha = 2$, (1) corresponds to the classical isotropic complex Gaussian distribution and the entries of P^α are homogeneous to variances. In the general case, it can basically be understood as the energy found at (a, b) for patch (f, t), just like more classical (fractional) power spectral densities describe the spectro-temporal energy content of the STFT of a locally stationary signal.

2.3. Signal Separation

Now, let us assume that the observed waveform is actually the sum of J underlying sources $\{s_j\}_{j=1}^J$. Due to the linearity of the CFT, this can be expressed in the CFT domain as:

$$\forall (a, b, f, t), x(a, b, f, t) = \sum_{j=1}^J s_j(a, b, f, t).$$

If we adopt the α-stable model presented above for each source and use the stability property, we have:

$$x(a, b, f, t) \sim S_{\alpha}S_{\alpha}(\sum_{j=1}^J P^\alpha_j(a, b, f, t)),$$

where P^α_j is the modulation density for source j. If these objects are known, it can be shown that each source can be estimated in a maximum a posteriori sense from the mixture as:

$$\mathbb{E}\left[s_j(a, b, f, t) \mid \{P^\alpha_j\}, x(a, b, f, t)\right] = \frac{P^\alpha_j(a, b, f, t)}{\sum_j P^\alpha_j(a, b, f, t)} x(a, b, f, t)$$

which we call the fractional α-Wiener filter in [27]. The resulting waveforms are readily obtained by inverting the CFT. As can be seen, we now need to estimate the modulation densities $\{P^\alpha_j\}$ based on the observation of the mixture CFT x, similarly to the estimation of the sources’ (fractional) Power Spectral Densities (α-PSD) in source separation studies.

2.4. Factorization Model and Parameter Estimation

In order to estimate the sources’ modulation densities, we first impose a factorization model over them, so as to reduce the number of parameters to be estimated. In this study, we set:

$$P^\alpha_j(a, b, f, t) = A_j(a, b, f) H_j(t),$$

where A_j and H_j are $N_a \times N_b \times N_f$ and $N_t \times 1$ nonnegative tensors, respectively. We call this a Common Fate Model. Intuitively,

3This result is the direct generalization of [28, th. 6.5.1] to multi-dimensional stationary processes.

Algorithm 1 Fitting NMF parameters of the nonnegative CFM (3).

With $v^\alpha = |x|^\alpha$ and always using the latest parameters available for computing $P^\alpha(a, b, f, t) = \sum_{j=1}^J A_j(a, b, f) H_j(t)$, iterate:

$$A_j(a, b, f) \leftarrow A_j(a, b, f) \frac{\sum_{a,b,f,t} v^\alpha(a,b,f,t) P^\alpha(a,b,f,t)^{(\beta-2)} H_j(t)}{\sum_{a,b,f,t} P^\alpha(a,b,f,t)^{(\beta-2)} H_j(t)}$$

$$H_j(t) \leftarrow H_j(t) \frac{\sum_{a,b,f,t} v^\alpha(a,b,f,t) P^\alpha(a,b,f,t)^{(\beta-2)} A_j(a,b,f)}{\sum_{a,b,f,t} P^\alpha(a,b,f,t)^{(\beta-2)} A_j(a,b,f)}.$$
We took a standard NMF based method [4]. We highlight that NMF 2D-DFT, with patches of the same size as for the CFM method. torization model when the magnitude of the STFT is taken before complex STFT or magnitude spectrograms, we tried our fac-
results of CFMM indicate that the complex CFT lead to better re-
positive influence of the CFM factorization compared to [16]. The better than CFM method. The results for CFMMOD indicate the measures. However, in terms of SIR the results of HR-NMF are can be achieved.

We ran the performance evaluation by using BSSeval [33]. The results of Signal to Distortion Ratio (SDR), Signal to Interference Ratio (SIR), and Signal to Artifacts Ratio (SAR) are depicted in Figure 2. Results indicate that the CFM model performs well in all measures. However, in terms of SIR the results of HR-NMF are better than CFM method. The results for CFMMOD indicate the positive influence of the CFM factorization compared to [16]. The results of CFMM indicate that the complex CFT lead to better results. NMF did perform surprisingly well, which may only hold for our test set, where each source is active for a long period. This results in a cyclic stationary vibrato, revealing spectral side lobes at such a high resolution. With more than one component per source, the results of CFM do improve, but it can be seen that more than two components (j = 4) will not increase the SDR values. The separation results and a full Python implementation of the CFM algorithm can be found on the companion website for this paper.

![Boxplots of BSS-Eval results of the unison dataset. Solid/dotted lines represent medians/means.](image1)

![Boxplots of SDR values of the unison dataset over the number of components. For j > 2 oracle clustering was applied.](image2)

Table 1. Overview of the evaluated algorithms

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Signal Representation</th>
<th>Factorization Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFM</td>
<td>Common Fate Model</td>
<td>STFT → Grid Slicing → 2D-DFT</td>
<td>$V(a, b, f, t) = P(a, b, f) \times H(t)$</td>
</tr>
<tr>
<td>NMF</td>
<td>[4] w/o add. constraints</td>
<td>STFT</td>
<td>$V(f, t) = W(f) \times H(t)$</td>
</tr>
<tr>
<td>MOD</td>
<td>[16] using DFT filterbank</td>
<td>STFT → [⋯] → STFT along each bin</td>
<td>$V(f, m, t) = W(f) \times A(m) \times H(t)$</td>
</tr>
<tr>
<td>CFMM</td>
<td>Common Fate Magnitude Model</td>
<td>STFT → [⋯] → Grid Slicing → 2D-DFT</td>
<td>$V(a, b, f, t) = P(a, b, f) \cdot H(t)$</td>
</tr>
<tr>
<td>CFMMOD</td>
<td>CFMM with a = 1</td>
<td>STFT → [⋯] → Grid Slicing → 2D-DFT</td>
<td>$V(a, b, f, t) = P(a, b, f) \cdot H(t)$</td>
</tr>
</tbody>
</table>

All factorizations ran for 100 iterations and were repeated five times. We chose $j = (2 \ldots 6)$ components for each factorization. For $j > 2$ we used oracle clustering to show the upper limit of SDR which can be achieved.

In this work we presented a method to exploit common modulation textures for source separation. A transformation based on a complex tensor representation computed from patches of the STFT has been introduced. We then showed how these patches are factorized by the proposed Common Fate Model, which is derived from the idea of humans perceiving common modulation over time as one source. Our results on unisonous musical instruments indicate that this method can perform well for this scenario. The CFM model could also be successfully used in other scenarios, such as speech separation.

4 VIENNA SYMPHONIC LIBRARY (https://vsl.co.at)

5 www.ioria.fr/-alliukus/cfm/
5. REFERENCES

