ADAPTIVE TWO-BAND SPECTRAL SUBTRACTION WITH MULTI-WINDOW SPECTRAL ESTIMATION

Chuang He
Los Alamos National Laboratory
T Division, MS B276
Los Alamos, NM 87545
Email: he@busco.lanl.gov

George Zweig †
Signition, Inc.
901 18th Street
Los Alamos, NM 87544
Email: zweig@signition.com

1. INTRODUCTION

In the past two decades a variety of speech enhancement algorithms have been proposed. Spectral subtraction [2] is an algorithm that has been extensively studied because of its simplicity and effectiveness.

However, the original spectral subtraction algorithm [2] introduces a perceptually annoying artifact which is commonly referred to as musical noise. The musical noise is caused by large statistical fluctuations in the spectral estimate of the noisy speech. In [1], the authors proposed an algorithm to reduce the level of perceived musical noise by subtracting an overestimate of the noise spectrum and preventing the resultant spectral components from going below a preset minimum value. By preventing the resultant spectral components from going below a preset minimum value, the level of perceived musical noise is reduced, but background noise remains. When a high signal-to-noise ratio (SNR) is required, and the preset minimum value must be reduced, the unmasked musical noise becomes distracting. Therefore it is desirable to develop an algorithm that reduces the level of musical noise. This can be achieved by reducing the variance of the spectral estimate of the stochastic component of speech with spectral smoothing.

The stochastic component consists of the high frequency part of voiced speech [6, 7] and unvoiced speech. In this paper the stochastic component of voiced speech is adaptively extracted with a high-pass filter. The spectrum of the stochastic component of speech—voiced speech at high frequencies and unvoiced speech—is smoothed with Thompson’s method of multi-window spectral estimation (MWSE) [8]. The resulting reduction of variance reduces musical noise, and therefore reduces the background noise necessary for masking.

The spectrum of the deterministic component of speech—low-pass filtered voiced speech—is estimated with a single window. Multiple windows would damage the harmonic structure and decrease intelligibility.

2. STOCHASTICITY OF VOICED SPEECH

It is generally believed that there is a stochastic component present in the excitation function of voiced speech [4, 7]. As a result, the higher formants of voiced speech are excited randomly, not periodically. In [6] we defined a quantity called normalized variance that measures the frequency dependence of the relative strengths of the stochastic and deterministic components of speech. We showed that for voiced vowels the normalized variance is small at low frequencies, confirming the deterministic nature of speech. At high frequencies, the normalized variance reaches its maximum value of 1, indicating that voiced speech is primarily stochastic above some cut-off frequency \(f_c \). Figure 1 shows the frequency dependence of the normalized variance of one utterance of the vowel /l/. This utterance is essentially stochastic above 4 kHz. We also observed that the cut-off frequency \(f_c \) above which voiced speech becomes stochastic varies with pitch, phoneme, and speaker. Therefore in the new denoising algorithm, this cut-off frequency is estimated adaptively for every frame classified as voiced.

*This work was supported by the DARPA Information Technology Office and the DOE Applied Mathematics Program.
† George Zweig is also affiliated with Los Alamos National Laboratory, T Division, MS B276, Los Alamos, NM 87545.
3. EXPLOITING THE STOCHASTICITY OF SPEECH

In [7] the stochasticity of voiced speech was exploited to improve the performance of speech compression and synthesis algorithms. In [4], the author introduced the Dual Excitation model which represents speech as the sum of a voiced and unvoiced component. The model was later applied to speech enhancement and the fundamental frequency and harmonic amplitudes of the voiced component of speech were estimated using a minimum mean-squared error approach [5, 9]. The voiced component was then constructed from these estimated parameters. The unvoiced component was obtained by subtracting the estimated voiced component from the speech signal. Different speech enhancement algorithms were applied to the voiced and unvoiced components. In this paper the stochastic component of speech is extracted by a different and computationally simpler algorithm (high-pass filtering), and a more sophisticated method of spectral smoothing is employed (MWSE).

3.1. Overview

For each frame, the energy of noisy speech is compared to a threshold to classify the frame as unvoiced (including silence) or voiced. For voiced speech, an algorithm similar to the one described in [7] is used to determine the cut-off frequency \(f_c \) above which speech in this frame is stochastic. The voiced speech is then divided into two bands using linear phase FIR filters with cut-off frequency \(f_c \).

Both the high-pass part of voiced speech and unvoiced speech are stochastic. MWSE is used to estimate their spectra, thereby reducing the variance of the spectral estimates. A single window (the first discrete prolate spheroidal sequence) is used to determine the spectrum of the low-pass deterministic part of voiced speech, thereby preserving its harmonic structure.

Once the spectral estimates are obtained, the algorithm described in [1] is used to enhance the speech with spectral subtraction.

3.2. Cut-off frequency \((f_c) \) estimation

For each frame classified as voiced, the fundamental frequency is estimated with a peak-picking algorithm performed on a smoothed spectral estimate. Here the goal of spectral smoothing is to reduce the variance in the spectral estimate near the harmonic frequencies. The cut-off frequency is then determined as the highest frequency below which the separation between adjacent peaks is approximately equal to the fundamental frequency. Only peaks that are significantly greater than background are considered and small gaps in the harmonic structure are ignored. This estimated cut-off frequency is smoothed by a median filter operating on three consecutive frames and rounded upward to the nearest multiple of 50 Hz. Pre-designed low-pass and high-pass Parks-McClellan optimal linear phase FIR filters with cut-off frequencies at multiples of 50 Hz are used to separate the stochastic and deterministic components of voiced speech.

3.3. Multi-window spectral estimation

Thomson’s method [8] of multi-window spectral estimation (MWSE) is used to estimate the spectrum of high-passed voiced speech and unvoiced speech in order to minimize the variance of the spectral estimates. For a given spectral resolution, multi-window spectral estimation entails computing \(K = 2N - 1 \) individual estimates of the spectrum with discrete prolate spheroidal sequence windows [8], and then combining these estimates to form a single spectral estimate. Here \(N \) is the number of points in a window and \(W \) is the frequency resolution of the spectral estimate. If the spectrum is flat within the frequency interval \([\Omega - W, \Omega + W]\) centered about frequency \(\Omega \), then the variance of the spectral estimate is reduced by a factor of \(K \) with respect to that of a single estimate. For fixed \(N \) and \(W \), the variance of a multi-window spectral estimate is smaller than that of other spectral smoothing techniques, e.g., the weighted overlapped segment averaging spectral estimator [3].

4. SPEECH ENHANCEMENT

The new speech enhancement system is summarized in Figure 2. High-passed voiced and unvoiced speech are enhanced by the same algorithm. A different algorithm is used to enhance low-passed voiced speech.

4.1. Enhancing low-passed voiced speech

In the low-frequency band of voiced speech, the spectrum is estimated from a windowed fast Fourier transform (FFT). The first discrete prolate spheroidal sequence is used for the window.

We adopt the algorithm described in [1] to perform spectral subtraction. The denoised low-passed voiced speech signal is given by

\[
\hat{s}_d[n] = \text{IFFT} \left\{ \sqrt{\hat{S}_l(m)} \cdot e^{j\theta_l[m]} \right\},
\]

where \(\text{IFFT} \{ \cdot \} \) denotes the inverse fast Fourier transform, \(\theta_l[m] \) is the phase of the FFT of the windowed low-passed
An adaptive two-band spectral subtraction algorithm is described. Gains over conventional algorithms come primarily from exploiting the stochasticity of speech. The stochastic component consists of the high frequency part of voiced speech and unvoiced speech. The stochastic component of voiced speech is adaptively extracted with a high-pass filter. The spectrum of the stochastic component of speech—voiced speech at high frequencies and unvoiced speech—is smoothed with Thomson’s method of multi-window spectral estimation. The resulting reduction of variance reduces both the musical noise and the background noise necessary for masking musical noise by approximately 7 dB.

7. REFERENCES

Figure 3: Top: Spectrogram of clean speech. Bottom: Spectrogram of noisy speech (average segmental SNR = 0 dB).

